This page provides two sample size algorithms for Receiver Operator Characteristics (ROC), with Javascript programs and sample size tables.
Sample Size and Standard Error of a Single ROC
This is based on the calculation of the Standard Error (SE) from the value of the ROX (θ),
as described by Hanley and McNeil (see references). The sample size is calculated by iterative approximation until
the required Standard Error is obtained. The confidence interval is θ±z(SE)
The sample size table for a single ROC in the next panel is based upon the following arguments
- The Standard Error (SE) from a nominated θ is calculated so that its one tail 95% confidence interval reaches but does
not overlap the null value of 0.5.
- As the one tail z value for 95% confidence interval is 1.65, θ-1.65SE=0.5, so SE = (θ-0.5) / 1.65
- Sample size is then calculated using θ and SE
This sample size is the number of cases in each of the two groups (Outcome Positive (O+) and Outcome Negative (O-), so the total
sample size is twice that presented.
This sample size is the minimum required to obtain a significant θ. In most cases, where a precise θ is required, or
comparison between multiple θ is intended, a narrower SE and therefore a larger sample size is used.
Sample size and power calculations for comparing two ROCs
This is also based on the formula described by Hanley and McNeil
(see references). It assumes that θ is a population measurement and approximately normally distributed, so that
the difference is Diff=θ
1-θ
2, and the Standard Error of the difference is the root sum
square of the individual Standard Errors SE
diff = sqrt(θ
12+θ
22)
The sample size calculated is for the one tail model. Those requiring a two tail model can use the same calculations but the
Type I Error value (α) is halved.
The sample size is for the total number of cases (number of Outcome Positive + number of Outcome Negative) in each of
the two ROCs.
Instead of using the z=diff/SEDiff or the 95% confidence interval of the difference to assess statistical
significance, the power calculation can also be used to see if the data contains sufficient power to satisfy the user's
requirement. Commonly a power in the data exceeding 0.8 for a nominated α of 0.05 is taken as a statistically
significant difference.
The table in the next panels provides sample size requirements for 3 levels of power (0.8, 0.9, 0.95), 3 levels of α
(0.1, 0.05, 0.01), and difference between two θ values from 0.5 upwards at 0.02 intervals.
References
Hanley JA, McNeil BJ (1982) The meaning and use of the Area under a
receiver operating characteristic (ROC) curve. Radiology 143:29-36
Sample Size to Establish 1 ROC
Table on this page provides minimal sample size required, for each of the two groups (Outcome Positive and Outcome Negative),
to obtain a statistically significant Receiver Operator Characteristics. Calculation is based on θ and its Standard Error (SE),
the formula is as follows
- θ = value of the ROC
- Standard Error = one tail 95% confidence interval to the null value of 0.5, SE = (θ-0.5)/1.65
Please Note :
- This calculation assumes that the researcher will onbtain equal sample size for Outcome Positive and Outcome Negative groups
- The sample size is for each group, so the total sample size is twice that in the table
- The sample size calculated is for the minimum number of cases required to achieve a statistically significant value,
that the one tail 95% confidence does not overlap the null (0.5) value. In most research projects, a more
precise (narrower) Standard Error is desirable, so the sample size will need to be bigger.
- Only θ > 0.5 is calculated. A θ=0.5 has no predictive value at all, and θ < 0.5 predicts in the
wrong direction.
θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz | θ | SSiz |
0.51 | 1000 | 0.52 | 1000 | 0.53 | 503 | 0.54 | 282 | 0.55 | 180 | 0.56 | 125 | 0.57 | 91 | 0.58 | 70 | 0.59 | 55 | 0.6 | 44 |
0.61 | 36 | 0.62 | 30 | 0.63 | 26 | 0.64 | 22 | 0.65 | 19 | 0.66 | 17 | 0.67 | 15 | 0.68 | 13 | 0.69 | 11 | 0.7 | 10 |
0.71 | 9 | 0.72 | 8 | 0.73 | 7 | 0.74 | 7 | 0.75 | 6 | 0.76 | 6 | 0.77 | 5 | 0.78 | 5 | 0.79 | 4 | 0.8 | 4 |
0.81 | 4 | 0.82 | 3 | 0.83 | 3 | 0.84 | 3 | 0.85 | 3 | 0.86 | 3 | 0.87 | 3 | 0.88 | 3 | 0.89 | 3 | 0.9 | 3 |
0.91 | 3 | 0.92 | 3 | 0.93 | 3 | 0.94 | 3 | 0.95 | 3 | 0.96 | 3 | 0.97 | 3 | 0.98 | 3 | 0.99 | 3 |
Sample Size to Compare 2 ROCs
α=Probability of Type I Error, β=Probability of Type II Error
θ
1 and θ
2 are values of the two ROCs being compared
Sample Size is total of both groups (outcome Positive + Outcome Negative) for each of the two ROCs, for θ
1
and the same number of cases for θ
2
Sample size is for a One Tail model. For two tail model, use the same calculation, but halve the &alpha value
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.50 | 0.52 | 3756 | 5151 | 8362 | 5472 | 7134 | 10844 | 7133 | 9015 | 13137 | 0.50 | 0.54 | 938 | 1287 | 2089 | 1366 | 1782 | 2709 | 1781 | 2251 | 3281 |
0.50 | 0.56 | 416 | 571 | 928 | 606 | 790 | 1202 | 790 | 998 | 1455 | 0.50 | 0.58 | 234 | 321 | 521 | 340 | 443 | 675 | 443 | 560 | 817 |
0.50 | 0.60 | 149 | 205 | 333 | 217 | 283 | 431 | 282 | 357 | 521 | 0.50 | 0.62 | 103 | 142 | 231 | 150 | 196 | 298 | 195 | 247 | 360 |
0.50 | 0.64 | 76 | 104 | 169 | 110 | 143 | 218 | 142 | 180 | 263 | 0.50 | 0.66 | 58 | 79 | 129 | 83 | 109 | 166 | 108 | 137 | 201 |
0.50 | 0.68 | 45 | 62 | 102 | 65 | 86 | 131 | 85 | 107 | 157 | 0.50 | 0.70 | 37 | 50 | 82 | 53 | 69 | 105 | 68 | 86 | 127 |
0.50 | 0.72 | 30 | 41 | 67 | 43 | 56 | 86 | 56 | 71 | 104 | 0.50 | 0.74 | 25 | 35 | 56 | 36 | 47 | 72 | 46 | 59 | 87 |
0.50 | 0.76 | 21 | 29 | 48 | 30 | 40 | 61 | 39 | 50 | 73 | 0.50 | 0.78 | 18 | 25 | 41 | 26 | 34 | 52 | 33 | 42 | 62 |
0.50 | 0.80 | 16 | 22 | 36 | 22 | 29 | 45 | 28 | 36 | 54 | 0.50 | 0.82 | 14 | 19 | 31 | 19 | 25 | 39 | 25 | 31 | 47 |
0.50 | 0.84 | 12 | 17 | 27 | 17 | 22 | 34 | 21 | 27 | 41 | 0.50 | 0.86 | 11 | 15 | 24 | 15 | 20 | 30 | 19 | 24 | 36 |
0.50 | 0.88 | 10 | 13 | 22 | 13 | 17 | 27 | 17 | 21 | 32 | 0.50 | 0.90 | 9 | 12 | 19 | 12 | 15 | 24 | 15 | 19 | 28 |
0.50 | 0.92 | 8 | 11 | 17 | 10 | 14 | 22 | 13 | 17 | 25 | 0.50 | 0.94 | 7 | 10 | 16 | 9 | 12 | 19 | 12 | 15 | 23 |
0.50 | 0.96 | 6 | 9 | 14 | 8 | 11 | 18 | 10 | 14 | 20 | 0.50 | 0.98 | 6 | 8 | 13 | 8 | 10 | 16 | 9 | 12 | 18 |
0.52 | 0.54 | 3745 | 5137 | 8341 | 5456 | 7114 | 10815 | 7111 | 8988 | 13101 | 0.52 | 0.56 | 935 | 1283 | 2083 | 1361 | 1775 | 2700 | 1773 | 2242 | 3269 |
0.52 | 0.58 | 415 | 569 | 924 | 603 | 787 | 1197 | 785 | 993 | 1449 | 0.52 | 0.60 | 233 | 319 | 519 | 338 | 441 | 672 | 440 | 556 | 812 |
0.52 | 0.62 | 148 | 204 | 331 | 215 | 281 | 428 | 280 | 354 | 518 | 0.52 | 0.64 | 103 | 141 | 229 | 149 | 194 | 296 | 193 | 245 | 358 |
0.52 | 0.66 | 75 | 103 | 168 | 109 | 142 | 217 | 141 | 179 | 261 | 0.52 | 0.68 | 57 | 79 | 128 | 83 | 108 | 165 | 107 | 136 | 199 |
0.52 | 0.70 | 45 | 62 | 101 | 65 | 85 | 130 | 84 | 106 | 156 | 0.52 | 0.72 | 36 | 50 | 81 | 52 | 68 | 104 | 67 | 85 | 125 |
0.52 | 0.74 | 30 | 41 | 67 | 43 | 56 | 86 | 55 | 70 | 103 | 0.52 | 0.76 | 25 | 34 | 56 | 35 | 46 | 71 | 46 | 58 | 86 |
0.52 | 0.78 | 21 | 29 | 47 | 30 | 39 | 60 | 38 | 49 | 72 | 0.52 | 0.80 | 18 | 25 | 41 | 25 | 33 | 52 | 33 | 42 | 62 |
0.52 | 0.82 | 16 | 21 | 35 | 22 | 29 | 44 | 28 | 36 | 53 | 0.52 | 0.84 | 14 | 19 | 31 | 19 | 25 | 39 | 24 | 31 | 46 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.52 | 0.86 | 12 | 16 | 27 | 17 | 22 | 34 | 21 | 27 | 40 | 0.52 | 0.88 | 11 | 15 | 24 | 15 | 19 | 30 | 18 | 24 | 35 |
0.52 | 0.90 | 9 | 13 | 21 | 13 | 17 | 27 | 16 | 21 | 31 | 0.52 | 0.92 | 8 | 12 | 19 | 11 | 15 | 24 | 14 | 19 | 28 |
0.52 | 0.94 | 8 | 10 | 17 | 10 | 14 | 21 | 13 | 16 | 25 | 0.52 | 0.96 | 7 | 9 | 16 | 9 | 12 | 19 | 11 | 15 | 22 |
0.52 | 0.98 | 6 | 9 | 14 | 8 | 11 | 17 | 10 | 13 | 20 | 0.54 | 0.56 | 3720 | 5104 | 8288 | 5419 | 7066 | 10744 | 7062 | 8927 | 13013 |
0.54 | 0.58 | 928 | 1273 | 2068 | 1350 | 1762 | 2680 | 1759 | 2224 | 3244 | 0.54 | 0.60 | 411 | 565 | 917 | 598 | 780 | 1188 | 778 | 984 | 1437 |
0.54 | 0.62 | 231 | 317 | 515 | 335 | 437 | 666 | 435 | 551 | 805 | 0.54 | 0.64 | 147 | 202 | 329 | 213 | 278 | 424 | 277 | 351 | 513 |
0.54 | 0.66 | 102 | 140 | 227 | 147 | 192 | 293 | 191 | 242 | 354 | 0.54 | 0.68 | 74 | 102 | 166 | 107 | 140 | 214 | 139 | 176 | 258 |
0.54 | 0.70 | 57 | 78 | 127 | 81 | 107 | 163 | 105 | 134 | 196 | 0.54 | 0.72 | 44 | 61 | 100 | 64 | 84 | 128 | 82 | 105 | 154 |
0.54 | 0.74 | 36 | 49 | 80 | 51 | 67 | 103 | 66 | 84 | 124 | 0.54 | 0.76 | 29 | 40 | 66 | 42 | 55 | 84 | 54 | 69 | 101 |
0.54 | 0.78 | 24 | 34 | 55 | 35 | 46 | 70 | 45 | 57 | 84 | 0.54 | 0.80 | 21 | 29 | 47 | 29 | 39 | 59 | 37 | 48 | 71 |
0.54 | 0.82 | 18 | 24 | 40 | 25 | 33 | 51 | 32 | 41 | 60 | 0.54 | 0.84 | 15 | 21 | 35 | 21 | 28 | 44 | 27 | 35 | 52 |
0.54 | 0.86 | 13 | 18 | 30 | 19 | 25 | 38 | 24 | 30 | 45 | 0.54 | 0.88 | 12 | 16 | 27 | 16 | 21 | 33 | 20 | 26 | 39 |
0.54 | 0.90 | 10 | 14 | 24 | 14 | 19 | 29 | 18 | 23 | 35 | 0.54 | 0.92 | 9 | 13 | 21 | 13 | 17 | 26 | 16 | 20 | 31 |
0.54 | 0.94 | 8 | 11 | 19 | 11 | 15 | 23 | 14 | 18 | 27 | 0.54 | 0.96 | 7 | 10 | 17 | 10 | 13 | 21 | 12 | 16 | 24 |
0.54 | 0.98 | 7 | 9 | 15 | 9 | 12 | 19 | 11 | 14 | 22 | 0.56 | 0.58 | 3681 | 5050 | 8202 | 5360 | 6990 | 10631 | 6984 | 8830 | 12875 |
0.56 | 0.60 | 917 | 1259 | 2046 | 1334 | 1741 | 2650 | 1738 | 2198 | 3207 | 0.56 | 0.62 | 406 | 558 | 907 | 590 | 770 | 1173 | 768 | 972 | 1419 |
0.56 | 0.64 | 228 | 313 | 509 | 330 | 431 | 657 | 429 | 543 | 794 | 0.56 | 0.66 | 145 | 199 | 324 | 210 | 274 | 419 | 272 | 345 | 505 |
0.56 | 0.68 | 100 | 138 | 224 | 145 | 189 | 289 | 188 | 238 | 349 | 0.56 | 0.70 | 73 | 101 | 164 | 105 | 138 | 211 | 136 | 173 | 254 |
0.56 | 0.72 | 56 | 77 | 125 | 80 | 105 | 161 | 103 | 131 | 193 | 0.56 | 0.74 | 44 | 60 | 98 | 63 | 82 | 126 | 81 | 103 | 151 |
0.56 | 0.76 | 35 | 48 | 79 | 50 | 66 | 101 | 65 | 82 | 121 | 0.56 | 0.78 | 29 | 40 | 65 | 41 | 54 | 83 | 53 | 67 | 99 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.56 | 0.80 | 24 | 33 | 54 | 34 | 45 | 69 | 44 | 56 | 82 | 0.56 | 0.82 | 20 | 28 | 46 | 29 | 38 | 58 | 37 | 47 | 69 |
0.56 | 0.84 | 17 | 24 | 39 | 24 | 32 | 50 | 31 | 40 | 59 | 0.56 | 0.86 | 15 | 21 | 34 | 21 | 28 | 43 | 26 | 34 | 51 |
0.56 | 0.88 | 13 | 18 | 30 | 18 | 24 | 37 | 23 | 29 | 44 | 0.56 | 0.90 | 11 | 16 | 26 | 16 | 21 | 33 | 20 | 26 | 38 |
0.56 | 0.92 | 10 | 14 | 23 | 14 | 18 | 29 | 17 | 22 | 34 | 0.56 | 0.94 | 9 | 12 | 21 | 12 | 16 | 25 | 15 | 20 | 30 |
0.56 | 0.96 | 8 | 11 | 18 | 11 | 14 | 23 | 13 | 17 | 26 | 0.56 | 0.98 | 7 | 10 | 17 | 10 | 13 | 20 | 12 | 16 | 24 |
0.58 | 0.60 | 3627 | 4977 | 8084 | 5281 | 6887 | 10476 | 6880 | 8699 | 12686 | 0.58 | 0.62 | 903 | 1240 | 2015 | 1313 | 1714 | 2609 | 1710 | 2163 | 3157 |
0.58 | 0.64 | 400 | 549 | 893 | 580 | 758 | 1155 | 755 | 955 | 1396 | 0.58 | 0.66 | 224 | 307 | 500 | 324 | 424 | 646 | 421 | 534 | 781 |
0.58 | 0.68 | 142 | 196 | 319 | 206 | 269 | 411 | 267 | 339 | 496 | 0.58 | 0.70 | 98 | 135 | 221 | 142 | 186 | 284 | 184 | 233 | 342 |
0.58 | 0.72 | 72 | 99 | 161 | 103 | 135 | 207 | 133 | 170 | 249 | 0.58 | 0.74 | 55 | 75 | 123 | 78 | 103 | 157 | 101 | 128 | 189 |
0.58 | 0.76 | 43 | 59 | 97 | 61 | 80 | 123 | 79 | 100 | 148 | 0.58 | 0.78 | 34 | 47 | 78 | 49 | 64 | 99 | 63 | 80 | 119 |
0.58 | 0.80 | 28 | 39 | 64 | 40 | 53 | 81 | 51 | 65 | 97 | 0.58 | 0.82 | 23 | 32 | 53 | 33 | 44 | 67 | 42 | 54 | 80 |
0.58 | 0.84 | 20 | 27 | 45 | 28 | 37 | 57 | 35 | 45 | 68 | 0.58 | 0.86 | 17 | 23 | 39 | 24 | 31 | 48 | 30 | 39 | 58 |
0.58 | 0.88 | 15 | 20 | 33 | 20 | 27 | 42 | 26 | 33 | 49 | 0.58 | 0.90 | 13 | 18 | 29 | 17 | 23 | 36 | 22 | 28 | 43 |
0.58 | 0.92 | 11 | 15 | 26 | 15 | 20 | 32 | 19 | 25 | 37 | 0.58 | 0.94 | 10 | 14 | 23 | 13 | 18 | 28 | 17 | 22 | 33 |
0.58 | 0.96 | 9 | 12 | 20 | 12 | 16 | 25 | 15 | 19 | 29 | 0.58 | 0.98 | 8 | 11 | 18 | 10 | 14 | 22 | 13 | 17 | 26 |
0.60 | 0.62 | 3559 | 4884 | 7934 | 5180 | 6757 | 10280 | 6748 | 8533 | 12446 | 0.60 | 0.64 | 885 | 1216 | 1977 | 1287 | 1680 | 2558 | 1675 | 2120 | 3095 |
0.60 | 0.66 | 391 | 538 | 875 | 568 | 742 | 1131 | 738 | 935 | 1367 | 0.60 | 0.68 | 219 | 301 | 490 | 317 | 414 | 633 | 411 | 522 | 764 |
0.60 | 0.70 | 139 | 192 | 312 | 201 | 263 | 402 | 261 | 331 | 485 | 0.60 | 0.72 | 96 | 132 | 216 | 138 | 181 | 277 | 179 | 227 | 334 |
0.60 | 0.74 | 70 | 97 | 158 | 100 | 132 | 202 | 130 | 165 | 243 | 0.60 | 0.76 | 53 | 73 | 120 | 76 | 100 | 154 | 98 | 125 | 184 |
0.60 | 0.78 | 42 | 58 | 94 | 59 | 78 | 120 | 76 | 97 | 144 | 0.60 | 0.80 | 33 | 46 | 76 | 47 | 63 | 96 | 61 | 78 | 115 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.60 | 0.82 | 27 | 38 | 62 | 39 | 51 | 79 | 50 | 63 | 94 | 0.60 | 0.84 | 23 | 32 | 52 | 32 | 42 | 66 | 41 | 52 | 78 |
0.60 | 0.86 | 19 | 27 | 44 | 27 | 36 | 55 | 34 | 44 | 66 | 0.60 | 0.88 | 16 | 23 | 38 | 23 | 30 | 47 | 29 | 37 | 56 |
0.60 | 0.90 | 14 | 20 | 32 | 20 | 26 | 40 | 25 | 32 | 48 | 0.60 | 0.92 | 12 | 17 | 28 | 17 | 22 | 35 | 21 | 27 | 41 |
0.60 | 0.94 | 11 | 15 | 25 | 15 | 20 | 31 | 18 | 24 | 36 | 0.60 | 0.96 | 9 | 13 | 22 | 13 | 17 | 27 | 16 | 21 | 32 |
0.60 | 0.98 | 8 | 12 | 19 | 11 | 15 | 24 | 14 | 18 | 28 | 0.62 | 0.64 | 3476 | 4772 | 7753 | 5059 | 6600 | 10043 | 6589 | 8334 | 12158 |
0.62 | 0.66 | 864 | 1187 | 1931 | 1255 | 1639 | 2497 | 1633 | 2068 | 3020 | 0.62 | 0.68 | 382 | 525 | 854 | 553 | 723 | 1103 | 719 | 911 | 1333 |
0.62 | 0.70 | 213 | 293 | 478 | 308 | 404 | 616 | 400 | 508 | 744 | 0.62 | 0.72 | 135 | 187 | 305 | 195 | 256 | 392 | 253 | 322 | 472 |
0.62 | 0.74 | 93 | 129 | 210 | 134 | 176 | 270 | 174 | 221 | 325 | 0.62 | 0.76 | 68 | 94 | 154 | 97 | 128 | 197 | 126 | 160 | 236 |
0.62 | 0.78 | 52 | 71 | 117 | 74 | 97 | 149 | 95 | 121 | 179 | 0.62 | 0.80 | 40 | 56 | 92 | 57 | 76 | 117 | 74 | 94 | 140 |
0.62 | 0.82 | 32 | 45 | 74 | 46 | 60 | 93 | 59 | 75 | 112 | 0.62 | 0.84 | 26 | 37 | 60 | 37 | 49 | 76 | 48 | 61 | 91 |
0.62 | 0.86 | 22 | 31 | 50 | 31 | 41 | 63 | 39 | 50 | 75 | 0.62 | 0.88 | 19 | 26 | 43 | 26 | 34 | 53 | 33 | 42 | 63 |
0.62 | 0.90 | 16 | 22 | 36 | 22 | 29 | 45 | 28 | 36 | 54 | 0.62 | 0.92 | 14 | 19 | 31 | 19 | 25 | 39 | 24 | 31 | 46 |
0.62 | 0.94 | 12 | 16 | 27 | 16 | 22 | 34 | 20 | 26 | 40 | 0.62 | 0.96 | 10 | 14 | 24 | 14 | 19 | 30 | 18 | 23 | 35 |
0.62 | 0.98 | 9 | 13 | 21 | 12 | 16 | 26 | 15 | 20 | 30 | 0.64 | 0.66 | 3380 | 4640 | 7541 | 4918 | 6417 | 9767 | 6405 | 8102 | 11822 |
0.64 | 0.68 | 839 | 1153 | 1877 | 1219 | 1592 | 2427 | 1585 | 2008 | 2934 | 0.64 | 0.70 | 370 | 509 | 830 | 537 | 702 | 1071 | 697 | 884 | 1293 |
0.64 | 0.72 | 207 | 285 | 464 | 299 | 391 | 598 | 387 | 492 | 721 | 0.64 | 0.74 | 131 | 181 | 295 | 189 | 248 | 380 | 245 | 311 | 457 |
0.64 | 0.76 | 90 | 125 | 204 | 130 | 170 | 261 | 167 | 213 | 314 | 0.64 | 0.78 | 66 | 91 | 149 | 94 | 124 | 190 | 121 | 155 | 228 |
0.64 | 0.80 | 50 | 69 | 113 | 71 | 93 | 144 | 91 | 117 | 172 | 0.64 | 0.82 | 39 | 54 | 89 | 55 | 73 | 113 | 71 | 91 | 135 |
0.64 | 0.84 | 31 | 43 | 71 | 44 | 58 | 90 | 56 | 72 | 107 | 0.64 | 0.86 | 26 | 35 | 58 | 36 | 47 | 74 | 46 | 59 | 87 |
0.64 | 0.88 | 21 | 29 | 49 | 30 | 39 | 61 | 38 | 48 | 72 | 0.64 | 0.90 | 18 | 25 | 41 | 25 | 33 | 51 | 31 | 40 | 61 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.64 | 0.92 | 15 | 21 | 35 | 21 | 28 | 44 | 26 | 34 | 51 | 0.64 | 0.94 | 13 | 18 | 30 | 18 | 24 | 37 | 22 | 29 | 44 |
0.64 | 0.96 | 11 | 16 | 26 | 15 | 21 | 32 | 19 | 25 | 38 | 0.64 | 0.98 | 10 | 14 | 23 | 13 | 18 | 28 | 17 | 22 | 33 |
0.66 | 0.68 | 3271 | 4491 | 7299 | 4757 | 6209 | 9451 | 6195 | 7837 | 11438 | 0.66 | 0.70 | 811 | 1115 | 1815 | 1178 | 1539 | 2346 | 1531 | 1940 | 2836 |
0.66 | 0.72 | 358 | 492 | 802 | 518 | 677 | 1035 | 672 | 852 | 1249 | 0.66 | 0.74 | 199 | 275 | 448 | 288 | 377 | 577 | 373 | 474 | 695 |
0.66 | 0.76 | 126 | 174 | 285 | 182 | 239 | 366 | 235 | 299 | 440 | 0.66 | 0.78 | 87 | 120 | 197 | 125 | 164 | 252 | 161 | 205 | 302 |
0.66 | 0.80 | 63 | 87 | 143 | 90 | 119 | 183 | 116 | 148 | 219 | 0.66 | 0.82 | 48 | 66 | 109 | 68 | 90 | 138 | 87 | 112 | 166 |
0.66 | 0.84 | 37 | 52 | 85 | 53 | 70 | 108 | 68 | 87 | 129 | 0.66 | 0.86 | 30 | 42 | 69 | 42 | 56 | 86 | 54 | 69 | 103 |
0.66 | 0.88 | 24 | 34 | 56 | 34 | 45 | 71 | 43 | 56 | 84 | 0.66 | 0.90 | 20 | 28 | 47 | 28 | 37 | 58 | 36 | 46 | 69 |
0.66 | 0.92 | 17 | 24 | 39 | 23 | 31 | 49 | 30 | 38 | 58 | 0.66 | 0.94 | 14 | 20 | 34 | 20 | 27 | 42 | 25 | 32 | 49 |
0.66 | 0.96 | 12 | 17 | 29 | 17 | 23 | 36 | 21 | 28 | 42 | 0.66 | 0.98 | 11 | 15 | 25 | 15 | 20 | 31 | 18 | 24 | 36 |
0.68 | 0.70 | 3148 | 4323 | 7028 | 4578 | 5975 | 9098 | 5960 | 7541 | 11009 | 0.68 | 0.72 | 780 | 1073 | 1746 | 1131 | 1479 | 2256 | 1471 | 1864 | 2726 |
0.68 | 0.74 | 343 | 473 | 771 | 497 | 650 | 994 | 645 | 818 | 1199 | 0.68 | 0.76 | 191 | 264 | 431 | 276 | 361 | 554 | 357 | 454 | 667 |
0.68 | 0.78 | 121 | 167 | 274 | 174 | 228 | 351 | 225 | 286 | 422 | 0.68 | 0.80 | 83 | 115 | 189 | 119 | 157 | 241 | 153 | 196 | 289 |
0.68 | 0.82 | 60 | 84 | 137 | 86 | 113 | 175 | 111 | 141 | 209 | 0.68 | 0.84 | 46 | 63 | 104 | 65 | 85 | 132 | 83 | 106 | 158 |
0.68 | 0.86 | 36 | 49 | 82 | 50 | 66 | 103 | 64 | 82 | 123 | 0.68 | 0.88 | 28 | 40 | 66 | 40 | 53 | 82 | 51 | 65 | 98 |
0.68 | 0.90 | 23 | 32 | 54 | 32 | 43 | 67 | 41 | 53 | 79 | 0.68 | 0.92 | 19 | 27 | 45 | 27 | 35 | 56 | 34 | 44 | 66 |
0.68 | 0.94 | 16 | 23 | 38 | 22 | 30 | 47 | 28 | 36 | 55 | 0.68 | 0.96 | 14 | 19 | 32 | 19 | 25 | 40 | 23 | 30 | 46 |
0.68 | 0.98 | 12 | 16 | 28 | 16 | 21 | 34 | 20 | 26 | 40 | 0.70 | 0.72 | 3013 | 4138 | 6728 | 4380 | 5718 | 8708 | 5700 | 7214 | 10535 |
0.70 | 0.74 | 746 | 1026 | 1671 | 1081 | 1413 | 2157 | 1404 | 1780 | 2605 | 0.70 | 0.76 | 328 | 452 | 737 | 474 | 620 | 949 | 614 | 780 | 1144 |
0.70 | 0.78 | 182 | 252 | 411 | 263 | 344 | 528 | 340 | 432 | 636 | 0.70 | 0.80 | 115 | 159 | 261 | 165 | 217 | 334 | 213 | 272 | 401 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.70 | 0.82 | 79 | 109 | 180 | 113 | 149 | 229 | 145 | 186 | 275 | 0.70 | 0.84 | 57 | 80 | 131 | 81 | 108 | 166 | 105 | 134 | 199 |
0.70 | 0.86 | 43 | 60 | 99 | 61 | 81 | 126 | 78 | 100 | 150 | 0.70 | 0.88 | 34 | 47 | 78 | 47 | 63 | 98 | 60 | 78 | 116 |
0.70 | 0.90 | 27 | 38 | 62 | 38 | 50 | 78 | 48 | 62 | 92 | 0.70 | 0.92 | 22 | 31 | 51 | 30 | 41 | 63 | 38 | 50 | 75 |
0.70 | 0.94 | 18 | 25 | 42 | 25 | 33 | 52 | 31 | 41 | 62 | 0.70 | 0.96 | 15 | 21 | 36 | 21 | 28 | 44 | 26 | 34 | 51 |
0.70 | 0.98 | 13 | 18 | 30 | 17 | 23 | 37 | 22 | 28 | 43 | 0.72 | 0.74 | 2865 | 3936 | 6401 | 4164 | 5437 | 8282 | 5418 | 6859 | 10018 |
0.72 | 0.76 | 708 | 974 | 1588 | 1026 | 1342 | 2049 | 1332 | 1690 | 2474 | 0.72 | 0.78 | 311 | 429 | 700 | 449 | 588 | 901 | 582 | 739 | 1085 |
0.72 | 0.80 | 173 | 238 | 390 | 248 | 326 | 501 | 321 | 409 | 602 | 0.72 | 0.82 | 109 | 151 | 248 | 156 | 205 | 316 | 201 | 257 | 379 |
0.72 | 0.84 | 75 | 104 | 170 | 106 | 140 | 217 | 137 | 175 | 259 | 0.72 | 0.86 | 54 | 75 | 124 | 77 | 101 | 157 | 98 | 126 | 187 |
0.72 | 0.88 | 41 | 57 | 94 | 57 | 76 | 118 | 73 | 94 | 141 | 0.72 | 0.90 | 32 | 44 | 73 | 44 | 59 | 92 | 56 | 73 | 109 |
0.72 | 0.92 | 25 | 35 | 59 | 35 | 47 | 73 | 44 | 58 | 87 | 0.72 | 0.94 | 21 | 29 | 48 | 28 | 38 | 60 | 36 | 46 | 70 |
0.72 | 0.96 | 17 | 24 | 40 | 23 | 31 | 49 | 29 | 38 | 58 | 0.72 | 0.98 | 14 | 20 | 33 | 19 | 26 | 41 | 24 | 31 | 48 |
0.74 | 0.76 | 2706 | 3718 | 6049 | 3931 | 5134 | 7823 | 5114 | 6475 | 9461 | 0.74 | 0.78 | 668 | 919 | 1499 | 967 | 1265 | 1933 | 1255 | 1592 | 2333 |
0.74 | 0.80 | 293 | 404 | 660 | 422 | 554 | 848 | 547 | 695 | 1021 | 0.74 | 0.82 | 162 | 224 | 368 | 233 | 306 | 471 | 301 | 384 | 566 |
0.74 | 0.84 | 102 | 142 | 233 | 146 | 193 | 297 | 188 | 240 | 356 | 0.74 | 0.86 | 70 | 97 | 160 | 99 | 131 | 203 | 128 | 163 | 243 |
0.74 | 0.88 | 51 | 70 | 116 | 71 | 95 | 147 | 91 | 117 | 175 | 0.74 | 0.90 | 38 | 53 | 88 | 53 | 71 | 111 | 68 | 88 | 131 |
0.74 | 0.92 | 30 | 41 | 69 | 41 | 55 | 86 | 52 | 68 | 102 | 0.74 | 0.94 | 24 | 33 | 55 | 33 | 43 | 68 | 41 | 53 | 80 |
0.74 | 0.96 | 19 | 27 | 45 | 26 | 35 | 55 | 33 | 43 | 65 | 0.74 | 0.98 | 16 | 22 | 37 | 21 | 29 | 46 | 27 | 35 | 53 |
0.76 | 0.78 | 2536 | 3485 | 5671 | 3682 | 4810 | 7332 | 4789 | 6065 | 8865 | 0.76 | 0.80 | 625 | 860 | 1404 | 903 | 1183 | 1809 | 1172 | 1488 | 2182 |
0.76 | 0.82 | 274 | 377 | 618 | 394 | 517 | 793 | 509 | 648 | 954 | 0.76 | 0.84 | 151 | 209 | 344 | 217 | 285 | 439 | 280 | 357 | 527 |
0.76 | 0.86 | 95 | 132 | 217 | 136 | 179 | 277 | 174 | 223 | 331 | 0.76 | 0.88 | 65 | 90 | 149 | 92 | 122 | 189 | 118 | 151 | 225 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.76 | 0.90 | 47 | 65 | 108 | 66 | 88 | 136 | 84 | 108 | 162 | 0.76 | 0.92 | 35 | 49 | 82 | 49 | 65 | 102 | 62 | 81 | 121 |
0.76 | 0.94 | 27 | 38 | 64 | 38 | 51 | 79 | 48 | 62 | 94 | 0.76 | 0.96 | 22 | 30 | 51 | 30 | 40 | 63 | 37 | 49 | 74 |
0.76 | 0.98 | 18 | 25 | 41 | 24 | 32 | 51 | 30 | 39 | 60 | 0.78 | 0.80 | 2355 | 3238 | 5270 | 3418 | 4466 | 6811 | 4444 | 5630 | 8233 |
0.78 | 0.82 | 579 | 798 | 1303 | 837 | 1096 | 1677 | 1085 | 1378 | 2022 | 0.78 | 0.84 | 253 | 349 | 572 | 364 | 478 | 734 | 470 | 599 | 882 |
0.78 | 0.86 | 140 | 194 | 318 | 200 | 263 | 406 | 257 | 329 | 486 | 0.78 | 0.88 | 88 | 122 | 201 | 125 | 165 | 255 | 160 | 205 | 305 |
0.78 | 0.90 | 60 | 83 | 138 | 84 | 112 | 174 | 108 | 138 | 207 | 0.78 | 0.92 | 43 | 60 | 100 | 60 | 80 | 125 | 77 | 99 | 148 |
0.78 | 0.94 | 32 | 45 | 75 | 45 | 60 | 94 | 57 | 73 | 111 | 0.78 | 0.96 | 25 | 35 | 59 | 34 | 46 | 73 | 43 | 56 | 85 |
0.78 | 0.98 | 20 | 28 | 47 | 27 | 36 | 57 | 34 | 44 | 67 | 0.80 | 0.82 | 2165 | 2977 | 4848 | 3140 | 4105 | 6262 | 4081 | 5172 | 7566 |
0.80 | 0.84 | 531 | 732 | 1197 | 766 | 1005 | 1539 | 993 | 1262 | 1854 | 0.80 | 0.86 | 231 | 320 | 525 | 332 | 437 | 672 | 429 | 547 | 806 |
0.80 | 0.88 | 128 | 177 | 291 | 182 | 240 | 371 | 234 | 299 | 443 | 0.80 | 0.90 | 80 | 111 | 184 | 113 | 150 | 232 | 145 | 186 | 277 |
0.80 | 0.92 | 54 | 76 | 126 | 76 | 101 | 158 | 97 | 125 | 187 | 0.80 | 0.94 | 39 | 55 | 91 | 54 | 72 | 113 | 69 | 89 | 134 |
0.80 | 0.96 | 29 | 41 | 68 | 40 | 54 | 85 | 51 | 66 | 100 | 0.80 | 0.98 | 22 | 32 | 53 | 31 | 41 | 65 | 38 | 50 | 76 |
0.82 | 0.84 | 1966 | 2704 | 4406 | 2849 | 3726 | 5688 | 3702 | 4693 | 6870 | 0.82 | 0.86 | 481 | 664 | 1086 | 693 | 909 | 1394 | 897 | 1141 | 1678 |
0.82 | 0.88 | 209 | 289 | 475 | 299 | 394 | 607 | 385 | 492 | 728 | 0.82 | 0.90 | 115 | 159 | 263 | 163 | 216 | 334 | 209 | 268 | 399 |
0.82 | 0.92 | 72 | 100 | 166 | 101 | 134 | 209 | 129 | 166 | 248 | 0.82 | 0.94 | 49 | 68 | 113 | 68 | 90 | 141 | 86 | 111 | 167 |
0.82 | 0.96 | 35 | 49 | 81 | 48 | 64 | 101 | 61 | 79 | 119 | 0.82 | 0.98 | 26 | 36 | 61 | 35 | 48 | 75 | 44 | 58 | 88 |
0.84 | 0.86 | 1759 | 2420 | 3946 | 2547 | 3332 | 5090 | 3307 | 4195 | 6145 | 0.84 | 0.88 | 429 | 592 | 970 | 617 | 810 | 1244 | 797 | 1015 | 1496 |
0.84 | 0.90 | 186 | 257 | 424 | 265 | 349 | 540 | 341 | 436 | 646 | 0.84 | 0.92 | 102 | 141 | 234 | 144 | 190 | 296 | 184 | 236 | 353 |
0.84 | 0.94 | 63 | 88 | 147 | 89 | 118 | 184 | 113 | 145 | 219 | 0.84 | 0.96 | 43 | 60 | 100 | 59 | 79 | 124 | 75 | 97 | 147 |
0.84 | 0.98 | 30 | 43 | 72 | 42 | 56 | 89 | 52 | 68 | 104 | 0.86 | 0.88 | 1545 | 2127 | 3470 | 2234 | 2925 | 4472 | 2900 | 3680 | 5396 |
| Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 | | Power(1-β)=0.8 | Power(1-β)=0.9 | Power(1-β)=0.95 |
| α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 | α=0.1 | α=0.05 | α=0.01 |
θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | θ1 | θ2 | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz | SSiz |
0.86 | 0.90 | 375 | 519 | 851 | 538 | 708 | 1089 | 695 | 886 | 1307 | 0.86 | 0.92 | 162 | 225 | 370 | 230 | 304 | 470 | 295 | 378 | 562 |
0.86 | 0.94 | 88 | 123 | 204 | 124 | 165 | 257 | 158 | 204 | 305 | 0.86 | 0.96 | 54 | 76 | 127 | 76 | 101 | 159 | 96 | 124 | 188 |
0.86 | 0.98 | 36 | 51 | 86 | 50 | 67 | 107 | 63 | 82 | 125 | 0.88 | 0.90 | 1325 | 1826 | 2981 | 1913 | 2507 | 3838 | 2481 | 3152 | 4626 |
0.88 | 0.92 | 320 | 443 | 728 | 457 | 603 | 929 | 589 | 753 | 1114 | 0.88 | 0.94 | 137 | 191 | 316 | 194 | 257 | 399 | 248 | 319 | 476 |
0.88 | 0.96 | 74 | 104 | 173 | 103 | 138 | 216 | 131 | 170 | 256 | 0.88 | 0.98 | 45 | 64 | 108 | 63 | 84 | 133 | 79 | 103 | 156 |
0.90 | 0.92 | 1100 | 1518 | 2482 | 1586 | 2080 | 3189 | 2053 | 2612 | 3840 | 0.90 | 0.94 | 263 | 366 | 603 | 375 | 495 | 767 | 482 | 617 | 917 |
0.90 | 0.96 | 112 | 156 | 260 | 157 | 209 | 327 | 200 | 258 | 387 | 0.90 | 0.98 | 60 | 84 | 141 | 83 | 111 | 175 | 104 | 136 | 206 |
0.92 | 0.94 | 872 | 1205 | 1974 | 1253 | 1647 | 2530 | 1620 | 2064 | 3041 | 0.92 | 0.96 | 206 | 287 | 475 | 291 | 387 | 601 | 373 | 480 | 716 |
0.92 | 0.98 | 86 | 121 | 203 | 120 | 160 | 253 | 151 | 197 | 298 | 0.94 | 0.96 | 641 | 889 | 1461 | 917 | 1209 | 1865 | 1182 | 1510 | 2235 |
0.94 | 0.98 | 148 | 208 | 347 | 207 | 277 | 434 | 263 | 341 | 514 | 0.96 | 0.98 | 410 | 572 | 947 | 580 | 770 | 1197 | 742 | 955 | 1426 |
|